Shiraz E-Medical Journal

Published by: Neoscriber Demo Publisher

Evaluation of the 900 MHz Radiofrequency Radiation Effects on the Antimicrobial Susceptibility and Growth Rate of Klebsiella pneumoniae

Mohammad Taheri 1 , Mohammad Moradi 1 , * , SMJ Mortazavi 2 , 3 , Shahla Mansouri 1 , Gholamreza Hatam 4 and Fatemeh Nouri 5
Authors Information
1 Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
2 Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
3 Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
4 Basic Sciences in Infectious Diseases Research center, Shiraz University of Medical Sciences, Shiraz, Iran
5 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
Article information
  • Shiraz E-Medical Journal: March 01, 2017, 18 (3); e44946
  • Published Online: January 31, 2017
  • Article Type: Research Article
  • Received: December 21, 2016
  • Revised: January 14, 2017
  • Accepted: January 25, 2017
  • DOI: 10.17795/semj44946

To Cite: Taheri M, Moradi M, Mortazavi S, Mansouri S, Hatam G, et al. Evaluation of the 900 MHz Radiofrequency Radiation Effects on the Antimicrobial Susceptibility and Growth Rate of Klebsiella pneumoniae, Shiraz E-Med J. 2017 ; 18(3):e44946. doi: 10.17795/semj44946.

Copyright © 2017, Shiraz University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Methods
3. Results
4. Discussion
  • 1. Ko WC, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 2002; 8(2): 160-6[DOI][PubMed]
  • 2. Jong GM, Hsiue TR, Chen CR, Chang HY, Chen CW. Rapidly fatal outcome of bacteremic Klebsiella pneumoniae pneumonia in alcoholics. Chest. 1995; 107(1): 214-7[PubMed]
  • 3. Torgomyan H, Kalantaryan V, Trchounian A. Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochem Biophys. 2011; 60(3): 275-81[DOI][PubMed]
  • 4. Tadevosyan H, Kalantaryan V, Trchounian A. Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochem Biophys. 2008; 51(2-3): 97-103[DOI][PubMed]
  • 5. Ming-Yan L, Kun S, Xu Z, Imshik L. Mechanism for Alternating Electric Fields Induced-Effects on Cytosolic Calcium. Chinese Phys Lett. 2009; 26(1): 17102[DOI]
  • 6. Montagnier L, Aissa J, Ferris S, Montagnier JL, Lavallee C. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci. 2009; 1(2): 81-90[DOI][PubMed]
  • 7. Martins A, Machado L, Costa S, Cerca P, Spengler G, Viveiros M, et al. Role of calcium in the efflux system of Escherichia coli. Int J Antimicrob Agents. 2011; 37(5): 410-4[DOI][PubMed]
  • 8. Davin-Regli A, Pagès JM. Regulation of efflux pumps in Enterobacteriaceae: genetic and chemical effectors. Antimicrob Resist Bacteria. 2006; : 55-75
  • 9. Nikaido H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Seminars in cell & developmental biology. 2001; : 215-23
  • 10. Simko M, Mattsson MO. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem. 2004; 93(1): 83-92[DOI][PubMed]
  • 11. Yadollahpour A, Jalilifar M. Electromagnetic Fields in the Treatment of Wound: A Review of Current Techniques and Future Perspective. J Pure Appl Microbiol. 2014; 8(4): 2863-77
  • 12. Androjna C, Fort B, Zborowski M, Midura RJ. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics. 2014; 35(6): 396-405[DOI][PubMed]
  • 13. Aziz Z, Cullum N, Flemming K. Electromagnetic therapy for treating venous leg ulcers. Cochrane Database Syst Rev. 2013; (2)[DOI][PubMed]
  • 14. Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dacha M. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res. 2004; 561(1-2): 53-62[DOI][PubMed]
  • 15. Strasak L, Vetterl V, Fojt L. Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagnet Biol Med. 2005; 24(3): 293-300
  • 16. Inhan-Garip A, Aksu B, Akan Z, Akakin D, Ozaydin AN, San T. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. Int J Radiat Biol. 2011; 87(12): 1155-61[DOI][PubMed]
  • 17. Taheri M, Mortazavi SM, Moradi M, Mansouri S, Nouri F, Mortazavi SA, et al. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation. J Biomed Phys Eng. 2015; 5(3): 115-20[PubMed]
  • 18. Tessaro LW, Murugan NJ, Persinger MA. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields. Microbiol Res. 2015; 172: 26-33[DOI][PubMed]
  • 19. Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009; 16(2-3): 79-88[DOI][PubMed]
  • 20. Torgomyan H, Trchounian A. Escherichia coli membrane-associated energy-dependent processes and sensitivity toward antibiotics changes as responses to low-intensity electromagnetic irradiation of 70.6 and 73 GHz frequencies. Cell Biochem Biophys. 2012; 62(3): 451-61[DOI][PubMed]
  • 21. Xu C, Lin X, Ren H, Zhang Y, Wang S, Peng X. Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics. 2006; 6(2): 462-73[DOI][PubMed]
  • 22. Torgomyan H, Tadevosyan H, Trchounian A. Extremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coli. Curr Microbiol. 2011; 62(3): 962-7[DOI][PubMed]
  • 23. Torgomyan H, Trchounian A. Bactericidal effects of low-intensity extremely high frequency electromagnetic field: an overview with phenomenon, mechanisms, targets and consequences. Crit Rev Microbiol. 2013; 39(1): 102-11[DOI][PubMed]
  • 24. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001; 65(2): 232-60[DOI][PubMed]
  • 25. Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, et al. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015; 59(2): 1020-9[DOI][PubMed]
  • 26. Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, et al. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015; 10(3)[DOI][PubMed]
  • 27. Bulgakova VG, Grushina VA, Orlova TI, Petrykina ZM, Polin AN, Noks PP, et al. [The effect of millimeter-band radiation of nonthermal intensity on sensitivity of Staphylococcus to various antibiotics]. Biofizika. 1996; 41(6): 1289-93[PubMed]
  • 28. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2): 163-75[DOI][PubMed]
  • 29. Yuksel M, Naziroglu M, Ozkaya MO. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring. Endocrine. 2016; 52(2): 352-62[DOI][PubMed]
  • 30. Ziaei-Darounkalaei N, Ameri M, Zahraei-Salehi T, Ziaei-Darounkalaei O, Mohajer-Tabrizi T, Bornaei L. AZDAST the new horizon in antimicrobial synergism detection. MethodsX. 2016; 3: 43-52[DOI][PubMed]
  • 31. Mortazavi S, Mosleh-Shirazi M, Tavassoli A, Taheri M, Bagheri Z, Ghalandari R, et al. A comparative study on the increased radioresistance to lethal doses of gamma rays after exposure to microwave radiation and oral intake of flaxseed oil. Iran J Radiat Res. 2011; 9(1): 9-14
  • 32. Mortazavi SMJ, Motamedifar M, Namdari G, Taheri M, Mortazavi AR, Shokrpour N. Non-linear adaptive phenomena which decrease the risk of infection after pre-exposure to radiofrequency radiation. Dose Response. 2014; 12(2)
  • 33. Mortazavi SMJ, Motamedifar M, Mehdizadeh AR, Namdari G, Taheri M. The Effect of Pre-exposure to Radiofrequency Radiations Emitted from a GSM Mobile Phone on the Suseptibility of BALB/c Mice to Escherichia coli. J Biomed Phys Engin. 2012; 2(4 Dec)
  • 34. Mortazavi S. Window theory in non-ionizing radiation-induced adaptive responses. Dose Response. 2013; 11(2): 293-4[DOI][PubMed]
  • 35. Lei C, Berg H. Electromagnetic window effects on proliferation rate of Corynebacterium glutamicum. Bioelectrochem Bioenerget. 1998; 45(2): 261-5
  • 36. Martirosyan V. The effects of physical factors on bacterial cell proliferation. J Low Frequency Noise Vibrat Active Control. 2012; 31(4): 247-55
  • 37. Belyaev IY, Shcheglov VS, Alipov YD, Polunin VA. Resonance effect of millimeter waves in the power range from 10‐19 to 3× 10‐3 W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics. 1996; 17(4): 312-21
  • 38. Torgomyan H, Ohanyan V, Blbulyan S, Kalantaryan V, Trchounian A. Electromagnetic irradiation of Enterococcus hirae at low-intensity 51.8- and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effects. FEMS Microbiol Lett. 2012; 329(2): 131-7[DOI][PubMed]
  • 39. Jankovic S, Milosev M, Novakovic M. The effects of microwave radiation on microbial cultures. Hospital Pharmacol Int Multidisciplinar J. 2014; 1(2): 102-8[DOI]
  • 40. Polk C. Electric fields and surface charges induced by ELF magnetic fields. Bioelectromagnetics. 1990; 11(2): 189-201[PubMed]
  • 41. Volpe P, Cappelli G, Mariani F, Serafino A, Eremenko T. Macrophage sensitivity to static magnetic fields. Biol Effects EMFs. 2002; 1: 374-81
  • 42. Fadel MA, Mohamed SA, Abdelbacki AM, El-Sharkawy AH. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency. J Appl Microbiol. 2014; 117(2): 358-65[DOI][PubMed]
  • 43. Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K, Kaneko Y, et al. Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci U S A. 2009; 106(34): 14570-5[DOI][PubMed]
  • 44. Strahl H, Hamoen LW. Membrane potential is important for bacterial cell division. Proc Natl Acad Sci U S A. 2010; 107(27): 12281-6[DOI][PubMed]
  • 45. Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belem Rodrigues M, Moreau JM, et al. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother. 2004; 48(12): 4662-4[DOI][PubMed]
  • 46. Oncul S, Cuce EM, Aksu B, Inhan Garip A. Effect of extremely low frequency electromagnetic fields on bacterial membrane. Int J Radiat Biol. 2016; 92(1): 42-9[DOI][PubMed]
  • 47. Nguyen TH, Shamis Y, Croft RJ, Wood A, McIntosh RL, Crawford RJ, et al. 18 GHz electromagnetic field induces permeability of Gram-positive cocci. Sci Rep. 2015; 5: 10980[DOI][PubMed]
  • 48. Segatore B, Setacci D, Bennato F, Cardigno R, Amicosante G, Iorio R. Evaluations of the Effects of Extremely Low-Frequency Electromagnetic Fields on Growth and Antibiotic Susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol. 2012; 2012: 587293[DOI][PubMed]
  • 49. Blair JM, Richmond GE, Piddock LJ. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014; 9(10): 1165-77[DOI][PubMed]
  • 50. Ke YL, Chang FY, Chen MK, Li SL, Jang LS. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli. Cell Biochem Biophys. 2013; 67(3): 1229-37[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments