Shiraz E-Medical Journal

Published by: Kowsar

What Android mHealth Apps in Iranian App Store ‘Cafebazaar’ Have More Chance of Download

Hamid Naderi 1 , * and Kobra Etminani 1
Authors Information
1 Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Article information
  • Shiraz E-Medical Journal: January 31, 2019, 20 (1); e64352
  • Published Online: December 2, 2018
  • Article Type: Research Article
  • Received: November 28, 2017
  • Revised: November 4, 2018
  • Accepted: November 5, 2018
  • DOI: 10.5812/semj.64352

To Cite: Naderi H, Etminani K . What Android mHealth Apps in Iranian App Store ‘Cafebazaar’ Have More Chance of Download, Shiraz E-Med J. 2019 ; 20(1):e64352. doi: 10.5812/semj.64352.

Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Free C, Phillips G, Felix L, Galli L, Patel V, Edwards P. The effectiveness of M-health technologies for improving health and health services: A systematic review protocol. BMC Res Notes. 2010;3:250. doi: 10.1186/1756-0500-3-250. [PubMed: 20925916]. [PubMed Central: PMC2976743].
  • 2. Batink T, Bakker J, Vaessen T, Kasanova Z, Collip D, van Os J, et al. Acceptance and commitment therapy in daily life training: A feasibility study of an mHealth intervention. JMIR Mhealth Uhealth. 2016;4(3). e103. doi: 10.2196/mhealth.5437. [PubMed: 27634747]. [PubMed Central: PMC5070582].
  • 3. Torgan C. The mHealth summit: Local and global converge. Kinetics; 2009, [cited 2016 Mar 08]. Available from:
  • 4. Jibb LA, Stevens BJ, Nathan PC, Seto E, Cafazzo JA, Stinson JN. A smartphone-based pain management app for adolescents with cancer: Establishing system requirements and a pain care algorithm based on literature review, interviews, and consensus. JMIR Res Protoc. 2014;3(1). e15. doi: 10.2196/resprot.3041. [PubMed: 24646454]. [PubMed Central: PMC3978558].
  • 5. Seto E, Leonard KJ, Cafazzo JA, Barnsley J, Masino C, Ross HJ. Mobile phone-based telemonitoring for heart failure management: A randomized controlled trial. J Med Internet Res. 2012;14(1). e31. doi: 10.2196/jmir.1909. [PubMed: 22356799]. [PubMed Central: PMC3374537].
  • 6. Pham Q, Wiljer D, Cafazzo JA. Beyond the randomized controlled trial: A review of alternatives in mHealth clinical trial methods. JMIR Mhealth Uhealth. 2016;4(3). e107. doi: 10.2196/mhealth.5720. [PubMed: 27613084]. [PubMed Central: PMC5035379].
  • 7. Goyal S, Morita P, Lewis GF, Yu C, Seto E, Cafazzo JA. The systematic design of a behavioural mobile health application for the self-management of type 2 diabetes. Can J Diabetes. 2016;40(1):95-104. doi: 10.1016/j.jcjd.2015.06.007. [PubMed: 26455762].
  • 8. Anderko L, Roffenbender JS, Goetzel RZ, Howard J, Millard F, Wildenhaus K, et al. Promoting prevention through the affordable care act: Workplace wellness. Prev Chronic Dis. 2012;9. E175. doi: 10.5888/pcd9.120092. [PubMed: 23237245]. [PubMed Central: PMC3523891].
  • 9. Google Fit. The Google fit SDK. 2015, [cited 2016 Mar 08]. Available from:
  • 10. Reseach2Guidance. mHealth app developer economics. The current status and trends of the mHealth app market. 2016, [cited 2016 Oct]. Available from:
  • 11. Naderi H, Etminani K. An evaluation of released mobile health apps in popular iranian app stores. Int J Med Engin Inform. Forthcoming 2018.
  • 12. Decker R, Trusov M. Estimating aggregate consumer preferences from online product reviews. Int J Res Mark. 2010;27(4):293-307. doi: 10.1016/j.ijresmar.2010.09.001.
  • 13. Ghose A, Han SP. Estimating demand for mobile applications in the new economy. Manag Sci. 2014;60(6):1470-88. doi: 10.1287/mnsc.2014.1945.
  • 14. Davis A, Khazanchi D. An empirical study of online word of mouth as a predictor for multi‐product category e‐commerce sales. Electronic Mark. 2008;18(2):130-41. doi: 10.1080/10196780802044776.
  • 15. Telang R, Garg R. Estimating app demand from publicly available data. Pittsburgh, PA: Carnegie Mellon University; 2011, [cited 2016 Mar 08]. Available from:
  • 16. Sinkinson M. The determinants of supply and demand for mobile applications. [Working Paper # 12-27]. Net Institute, The Wharton School University of Pennsylvania; 2012.
  • 17. Ghose A, Ipeirotis PG, Li B. Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Market Sci. 2012;31(3):493-520. doi: 10.1287/mksc.1110.0700.
  • 18. Pereira-Azevedo N, Osorio L, Cavadas V, Fraga A, Carrasquinho E, de Oliveira EC, et al. Expert involvement predicts mHealth app downloads: Multivariate regression analysis of urology apps. JMIR mHealth uHealth. 2016;4(3). doi: 10.2196/mhealth.5738.
  • 19. Saeedi MG, Kalhori SR, Nouri R, Yasini M. Persian mHealth apps: A cross sectional study based on use case classification. Stud Health Technol Inform. 2016;228:230-4. [PubMed: 27577377].
  • 20. Minelli R, Lanza M. Software analytics for mobile applications--Insights and lessons learned. 17th European Conference on Software Maintenance and Reengineering (CSMR). Genova (Italy). IEEE; 2013. p. 144-53.
  • 21. Al-Subaihin A, Finkelstein A, Harman M, Jia Y, Martin W, Sarro F, et al. App store mining and analysis. Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile. August 31 - September 04, 2015; Bergamo, Italy. ACM; 2015. p. 1-2.
  • 22. Hoon L, Vasa R, Schneider JG, Grundy J. An analysis of the mobile app review landscape: Trends and implications. [dissertation]. Faculty of Information and Communication Technologies, Swinburne University of Technology, Tech. Rep; 2013.
  • 23. Pagano D, Maalej W. User feedback in the appstore: An empirical study. 21st IEEE International Requirements Engineering Conference (RE). July 15th-19th, 2013; Rio de Janeiro, Brazil. IEEE; 2013. p. 125-34.
  • 24. Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N. Why people hate your app: Making sense of user feedback in a mobile app store. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 11 - 14, 2013; Chicago, IL, USA. ACM; 2013. p. 1276-84.
  • 25. Fox S, Duggan M. Mobile health 2012. Pew Internet and American Life Project. Washington, DC: Pew Research Center; 2012, [cited 2016 Mar 15]. Available from:
  • 26. Pew Research Center. U.S. smartphone use in 2015. Pew Internet and American Life Project. Washington, DC: Pew Research Center; 2015, [cited 2016 Mar 15]. Available from:
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments