Shiraz E-Medical Journal

Published by: Kowsar
Crossmark

Construction, Expression, and Purification of p28 as a Cell-Penetrating Peptide ‎with Anticancer Effects on Burkitt’s Lymphoma Cell Line

Haniyeh Abuei 1 , Abbas Behzad Behbahani 2 , Gholamreza Rafiei Dehbidi 2 , Mohammad Pirouzfar 1 , Farahnaz Zare 2 and Ali Farhadi 2 , *
Authors Information
1 Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
2 Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
Article information
  • Shiraz E-Medical Journal: 20 (7); e85190
  • Published Online: June 11, 2019
  • Article Type: Research Article
  • Received: October 9, 2018
  • Revised: October 13, 2018
  • Accepted: November 20, 2018
  • DOI: 10.5812/semj.85190

To Cite: Abuei H, Behzad Behbahani A , Rafiei Dehbidi G , Pirouzfar M , Zare F, et al. Construction, Expression, and Purification of p28 as a Cell-Penetrating Peptide ‎with Anticancer Effects on Burkitt’s Lymphoma Cell Line, Shiraz E-Med J. Online ahead of Print ; 20(7):e85190. doi: 10.5812/semj.85190.

Abstract
Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. van de Kamp M, Silvestrini MC, Brunori M, Van Beeumen J, Hali FC, Canters GW. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem. 1990;194(1):109-18. [PubMed: 2174771].
  • 2. Van Pouderoyen G, Cigna G, Rolli G, Cutruzzola F, Malatesta F, Silvestrini MC, et al. Electron-transfer properties of Pseudomonas aeruginosa [Lys44, Glu64]azurin. Eur J Biochem. 1997;247(1):322-31. [PubMed: 9249043].
  • 3. Zaborina O, Dhiman N, Ling Chen M, Kostal J, Holder IA, Chakrabarty AM. Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: External-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology. 2000;146 ( Pt 10):2521-30. doi: 10.1099/00221287-146-10-2521. [PubMed: 11021927].
  • 4. Punj V, Bhattacharyya S, Saint-Dic D, Vasu C, Cunningham EA, Graves J, et al. Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene. 2004;23(13):2367-78. doi: 10.1038/sj.onc.1207376. [PubMed: 14981543].
  • 5. Punj V, Das Gupta TK, Chakrabarty AM. Bacterial cupredoxin azurin and its interactions with the tumor suppressor protein p53. Biochem Biophys Res Commun. 2003;312(1):109-14. [PubMed: 14630027].
  • 6. Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci U S A. 2002;99(22):14098-103. doi: 10.1073/pnas.222539699. [PubMed: 12393814]. [PubMed Central: PMC137843].
  • 7. De Grandis V, Bizzarri AR, Cannistraro S. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin. J Mol Recognit. 2007;20(4):215-26. doi: 10.1002/jmr.840. [PubMed: 17703463].
  • 8. Yamada T, Goto M, Punj V, Zaborina O, Kimbara K, Das Gupta TK, et al. The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infect Immun. 2002;70(12):7054-62. doi: 10.1128/iai.70.12.7054-7062.2002. [PubMed: 12438386]. [PubMed Central: PMC133031].
  • 9. Taylor BN, Mehta RR, Yamada T, Lekmine F, Christov K, Chakrabarty AM, et al. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res. 2009;69(2):537-46. doi: 10.1158/0008-5472.CAN-08-2932. [PubMed: 19147567].
  • 10. Yamada T, Mehta RR, Lekmine F, Christov K, King ML, Majumdar D, et al. A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol Cancer Ther. 2009;8(10):2947-58. doi: 10.1158/1535-7163.MCT-09-0444. [PubMed: 19808975].
  • 11. Yamada T, Fialho AM, Punj V, Bratescu L, Gupta TK, Chakrabarty AM. Internalization of bacterial redox protein azurin in mammalian cells: Entry domain and specificity. Cell Microbiol. 2005;7(10):1418-31. doi: 10.1111/j.1462-5822.2005.00567.x. [PubMed: 16153242].
  • 12. Melnick A. Targeting aggressive B-cell lymphomas with cell-penetrating peptides. Biochem Soc Trans. 2007;35(Pt 4):802-6. doi: 10.1042/BST0350802. [PubMed: 17635152].
  • 13. Gusarova GA, Wang IC, Major ML, Kalinichenko VV, Ackerson T, Petrovic V, et al. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J Clin Invest. 2007;117(1):99-111. doi: 10.1172/JCI27527. [PubMed: 17173139]. [PubMed Central: PMC1697798].
  • 14. Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci U S A. 2004;101(25):9381-6. doi: 10.1073/pnas.0403317101. [PubMed: 15197262]. [PubMed Central: PMC438985].
  • 15. Enback J, Laakkonen P. Tumour-homing peptides: Tools for targeting, imaging and destruction. Biochem Soc Trans. 2007;35(Pt 4):780-3. doi: 10.1042/BST0350780. [PubMed: 17635147].
  • 16. Taylor B, Yamada T, Lekmine F, Christov K, Bratescu L, Chakrabarty A. Mechanism of the selective penetration of azurin derived peptides into cancer cells. Experiment Molec Therap. 2007;67(9):5623 LP-5623.
  • 17. Jia L, Gorman GS, Coward LU, Noker PE, McCormick D, Horn TL, et al. Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother Pharmacol. 2011;68(2):513-24. doi: 10.1007/s00280-010-1518-3. [PubMed: 21085965].
  • 18. Yamada T, Das Gupta TK, Beattie CW. p28, an anionic cell-penetrating peptide, increases the activity of wild type and mutated p53 without altering its conformation. Mol Pharm. 2013;10(9):3375-83. doi: 10.1021/mp400221r. [PubMed: 23952735].
  • 19. Yamada T, Signorelli S, Cannistraro S, Beattie CW, Bizzarri AR. Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry. Mol Pharm. 2015;12(1):140-9. doi: 10.1021/mp500495u. [PubMed: 25478723].
  • 20. Bizzarri AR, Santini S, Coppari E, Bucciantini M, Di Agostino S, Yamada T, et al. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy. Int J Nanomedicine. 2011;6:3011-9. doi: 10.2147/IJN.S26155. [PubMed: 22162658]. [PubMed Central: PMC3230568].
  • 21. Mehta RR, Hawthorne M, Peng X, Shilkaitis A, Mehta RG, Beattie CW, et al. A 28-amino-acid peptide fragment of the cupredoxin azurin prevents carcinogen-induced mouse mammary lesions. Cancer Prev Res (Phila). 2010;3(10):1351-60. doi: 10.1158/1940-6207.CAPR-10-0024. [PubMed: 20841487].
  • 22. Yamada T, Christov K, Shilkaitis A, Bratescu L, Green A, Santini S, et al. p28, a first in class peptide inhibitor of cop1 binding to p53. Br J Cancer. 2013;108(12):2495-504. doi: 10.1038/bjc.2013.266. [PubMed: 23736031]. [PubMed Central: PMC3694247].
  • 23. Yamada T, Das Gupta TK, Beattie CW. p28-mediated activation of p53 in G2-M phase of the cell cycle enhances the efficacy of DNA damaging and antimitotic chemotherapy. Cancer Res. 2016;76(8):2354-65. doi: 10.1158/0008-5472.CAN-15-2355. [PubMed: 26921335].
  • 24. Beattie CW, Mehta R, Mehta R, Yamada T, Das Gupta TK, Chakrabarty A. A cupredoxin derived peptide inhibits angiogenesis and mammary end bud transformation in vitro. Cancer Epidemiol Biomarkers Prev. 2006;15(12):A217 LP-A217.
  • 25. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis. 2011;14(3):355-69. doi: 10.1007/s10456-011-9220-6. [PubMed: 21667138].
  • 26. Lulla RR, Goldman S, Yamada T, Beattie CW, Bressler L, Pacini M, et al. Phase I trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: A pediatric brain tumor consortium study. Neuro Oncol. 2016;18(9):1319-25. doi: 10.1093/neuonc/now047. [PubMed: 27022131]. [PubMed Central: PMC4999001].
  • 27. Harrington SE, Smith TJ. The role of chemotherapy at the end of life: "When is enough, enough?". JAMA. 2008;299(22):2667-78. doi: 10.1001/jama.299.22.2667. [PubMed: 18544726]. [PubMed Central: PMC3099412].
  • 28. Jackson SE, Chester JD. Personalised cancer medicine. Int J Cancer. 2015;137(2):262-6. doi: 10.1002/ijc.28940. [PubMed: 24789362].
  • 29. Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294-7. doi: 10.1038/nature03095. [PubMed: 15549090].
  • 30. Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21(12):556-62. doi: 10.1016/j.tibtech.2003.10.005. [PubMed: 14624865].
  • 31. Regberg J, Srimanee A, Langel U. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals (Basel). 2012;5(9):991-1007. doi: 10.3390/ph5090991. [PubMed: 24280701]. [PubMed Central: PMC3816645].
  • 32. Farrell PJ, Allan GJ, Shanahan F, Vousden KH, Crook T. p53 is frequently mutated in Burkitt's lymphoma cell lines. EMBO J. 1991;10(10):2879-87. [PubMed: 1915267]. [PubMed Central: PMC452998].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments